
Langevin equations coupled through correlated noises

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 5251

(http://iopscience.iop.org/0305-4470/32/28/305)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/28
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 5251–5260. Printed in the UK PII: S0305-4470(99)01401-8

Langevin equations coupled through correlated noises

Stefano Lise†‡‖, Amos Maritan†‡ and Michael R Swift§¶
† International School for Advanced Studies (SISSA) and Istituto Nazionale per la Fisica della
Materia (INFM), Via Beirut 2-4, 34014 Trieste, Italy
‡ The Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera 11,
34100 Trieste, Italy
§ Department of Theoretical Physics, The University of Manchester, Manchester M13 9PL, UK

Received 27 January 1999, in final form 6 May 1999

Abstract. We consider the dynamics of non-interacting Brownian particles which are driven by
correlated (non-independent) noise sources. In simple confining potentials the particles tend to
aggregate as the noise correlation is increased. If two particles are subject to the same noise they
will coalesce and remain together ever after. We show that complete aggregation of the particles
can be expected even in the case of a disordered potential which does not confine the individual
particle trajectories. Finally, we examine the case of correlation in the noises which depends on
the separation of the two particles.

An important property of driven dissipative systems is their ability to form ordered structures
under non-equilibrium conditions [1]. There are many mechanisms responsible for creating
correlations, and much effort, both experimental and theoretical, has been invested in the
study of the resulting non-equilibrium steady states. Systems of this type include chemical
reactions and reaction–diffusion fronts [2], driven lattice gases [3], phase-ordering kinetics [4]
and clustering in granular media [5]. In all these examples, inter-particle interactions give rise
to correlated dynamics.

In this paper we will discuss an alternative mechanism which can produce non-trivial,
ordered steady states. We consider the behaviour of particles which do not interact directly,
but are driven by correlated noise sources [6]. We will demonstrate that aggregation of the
particles results from an interplay between the noise correlation and the common environment
in which the particles move. Physical realizations of such a mechanism arise in many contexts
as, for example, in shaken granular media [5]. Furthermore, correlated noises of the type
considered here has wider applications, ranging from the modelling of communal behaviour
in biological systems [7] to investment strategies in the stock market [8]. Similar problems
have also been investigated in relation to the control of chaotic dynamical systems [9–11], a
problem which finds potential applications in, for instance, secure communication [12].

We will first introduce a simple two-particle model which will be used to illustrate the
aggregation phenomenon and define the relevant parameters. Next we consider more general
confining potentials and show numerically how order develops in these situations. We will
then investigate noise-correlated dynamics in random environments and show that, even in
cases where the individual particle trajectories are not localized in space, correlated noises can
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induce aggregation. We conclude by studying the Brownian motion of two particles whose
noise correlation strength is a function of their separation. We will argue that depending on
the form of the correlation, the particles can either aggregate or remain apart forever.

The motion of a particle in a highly viscous medium can be described by a Langevin
equation of the form

ẋ(t) = −∂V
∂x

+ η(t) (1)

whereV (x) is the external potential,η(t) is the ‘thermal’ noise and the acceleration term
proportional toẍ(t) has been considered negligible. The noise is generally assumed to be
Gaussian with

〈η(t)〉 = 0

〈η(t)η(t ′)〉 = 2Dδ(t − t ′) (2)

and the stationary state, if it exists, corresponds to a Boltzmann distribution

Peq(x) ∝ e−V (x)/D. (3)

Consider now two non-interacting Brownian particles moving in the same external potential
V (x), so that the equations of motion are

ẋ1(t) = f (x1) + η1(t) (4)

ẋ2(t) = f (x2) + η2(t) (5)

wheref (x) = − ∂V
∂x

is the force acting on the particles;η1(t) andη2(t) are Gaussian noises
which satisfy

〈ηi(t)〉 = 0 i = 1, 2 (6)

and

〈ηi(t)ηj (t ′)〉 = 2γij δ(t − t ′) i, j = 1, 2. (7)

The motion of the individual particles is coupled through the correlation matrixγij , which we
will assume to have the following form:

γij = D
(

1 ε

ε 1

)
. (8)

If ε = 0 then the two particles move independently and the steady state will be given by the
product of two single-particle distribution functions, equation (3). On the other hand, ifε = 1
the stationary distribution is formally [6]

Peq(x1, x2) ∝ δ(x1− x2)e
−V (x1)/D. (9)

In passing, it is interesting to note that this solution remains valid even if a repulsive force
between the two particles is introduced [10]. Here we are interested in the case 0< ε < 1
and ask the following question: how does the steady state of the two particles depend on the
noise correlation, and, in particular, can spatial correlations in the noise induce dynamical
correlations in the relative motion of the particles? In the following investigation we will limit
ourselves to one-dimensional systems. For confiningV (x), however, equations (3) and (9)
hold in any dimensions, possibly suggesting that in this case there is no effect related to the
dimensionality of the space.

In order to gain some insight into the problem we first consider the simple situation
of two particles confined by a harmonic potential and coupled through the noise correlator
equation (8). In this caseV (x) = 1

2kx
2 and the equations of motion become

ẋ1(t) = −kx1 + η1(t) (10)

ẋ2(t) = −kx2 + η2(t). (11)
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With the change of variables

s = x1 + x2 (12)

d = x1− x2 (13)

the equations of motion decouple and the steady-state probability densityP(x1, x2) can be
determined exactly for allε. The resulting solution is

P(x1, x2) = k

2π(1− ε2)1/2
e−

k
2D

x2
1

1+ε e−
k

2D

x2
2

1+ε e−
k

2D (x1−x2)
2 ε

1−ε2 . (14)

In the limit ε → 0 we recover the expected product distribution whilst forε > 0, equation (14)
indicates that the particles tend to cluster; the joint probability distribution is peaked around
x1 = x2. Furthermore, in the limitε → 1, one finds (see also [13])

P(x1, x2) ∼ δ(x1− x2)e
− k

2D x
2
1 . (15)

Thus, the particles will tend to aggregate and, as they both experience the same noise,
once they meet they will remain together ever after. From this simple example it is clear that
noise correlation can induce spatial aggregation. It is interesting to remark that an analogous
effect arises even by including the acceleration term in the equations of motion (10) and (11).
Indeed, in the case of an external harmonic potential, the stationary probability distribution
can be worked out exactly and results in complete aggregation in the limitε → 1.

Next we shall consider the two particles confined by a double-well potential. While
such a situation is not amenable to a complete analytic treatment it is readily simulated
numerically. We consider a potential of the formV (x) = x4/4 − x2/2 and measure the
probability distribution, in the steady state, for the separation of the particlesd, equation (13).
Figure 1 showsP(d) for increasing values ofε. One sees that the particles tend to aggregate

Figure 1. Probability distributionP(d) in the case of a double-well potential. The curves
correspond toε = 0.2, 0.5, 0.9, 0.95, 0.99, the larger values ofε having more weight at the origin.
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asε is increased, and that in the limitε → 1, one again finds thatP(d) tends toδ(d). Note
that in this limitP(d) contains no information of the underlying potential.

As a third example, we consider two particles moving in a infinite potential well

V (x) =
{

0 if 0 < x < L

∞ otherwise.
(16)

We will define the dynamics in terms of a discrete space-time master equation, which can
be readily solved numerically and used as a starting point to deduce the correct continuum
equation of motion and boundary conditions. The coordinates of the particles can take only
discrete multiples of the lattice spacinga, and it is convenient to represent the problem on a
two-dimensional square lattice. Each point of the latticeEx = (x1, x2) describes the coordinates
of the two particles. LetP(Ex, t) be the probability that particle 1 is atx1 and particle 2 is at
x2, at timet , andWEx,Ey the transition rate from siteEy to siteEx (

∑
Ex WEx,Ey = 1). In general

P(Ex, t +1t) =
∑
Ey
WEx,EyP (Ey, t). (17)

The microscopic dynamics of a single particle is defined as follows. The particle moves to
the left or to the right with equal probability; if it is on a boundary of the well (e.g.x1 = L)
and tries to move outside the well (e.g. right) it stays at the same site for that time step. The
correlation in the noise can be implemented in the following way: away from the boundaries
both particles move in the same direction with a rate1+ε

4 while they move in opposite directions
with rate 1−ε

4 . If one of the particles is on the boundary and tries to move out of the region
it remains on the boundary for that time step. A summary of the transition rates is shown in
figure 2. Note that forε = 0 the motion is uncorrelated whereas, in the limitε → 1, the motion
becomes completely correlated, as both particles will move in the same direction unless they
are restrained by the boundaries. In the latter case, therefore, the relative distance of the two
particles cannot increase and, in particular, it decreases if and only if one of the particles hits
the wall.

In terms of these transition rates, the master equation can be written as

P(x1, x2, t +1t) = P(x1 + a, x2 + a, t)
1 + ε

4
+ P(x1− a, x2 − a, t)1 + ε

4

+P(x1− a, x2 + a, t)
1− ε

4
+ P(x1 + a, x2 − a, t)1− ε

4
(18)

while on a boundary, for examplex1 = L,

P(L, x2, t +1t) = P(L, x2 + a, t)
1− ε

4
+ P(L− a, x2 − a, t)1 + ε

4

+P(L− a, x2 + a, t)
1− ε

4
+ P(L, x2 − a, t)1 + ε

4
(19)

and at a corner, for examplex1 = x2 = L,

P(L,L, t +1t) = P(L,L, t)1 + ε

4
+ P(L− a, L− a, t)1 + ε

4

+P(L− a, L, t)1 + ε

4
+ P(L,L− a, t)1 + ε

4
. (20)

These equations are readily solved numerically and results for the steady-state probability
are shown in figure 3. The darker regions of the plot correspond to higher values of the joint
probability distribution. Again there is a tendency for the particles to aggregate and figure 4
shows the probability distribution for the particle separation,d. As ε → 1, this distribution
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Figure 2. Transition rates for the master equation in a infinite potential well. The three illustrated
points are bulk, boundary and corner sites, as shown.

also tends to aδ-function. Here we have plottedP(d) for even values ofd only, as the dynamics
described above introduces two sub-lattices coupled through the boundary conditions.

A continuum description of the problem can be obtained from the smalla expansion of
the master equation. By Taylor expanding equations (18)–(20) up to the first non-vanishing
terms ina and1t , and imposing diffusive scaling1t = a2/2 in the limit a → 0, we obtain
the continuum equation

∂P

∂t
= ∂2P

∂2x1
+
∂2P

∂2x2
+ 2ε

∂2P

∂x1∂x2
(21)

with boundary conditions
∂P

∂x1
+ 2ε

∂P

∂x2
= 0 (22)

∂P

∂x2
+ 2ε

∂P

∂x1
= 0 (23)

alongx1 = 0, L andx2 = 0, L, respectively. Note that these equations do not correspond to
conventional reflective boundary conditions. In fact, they introduce a probability current into
the system which flows from the lighter to the darker regions of figure 3. Only forε = 0 is the
probability flux in the steady-state zero, as only in this limit is detailed balance recovered.

At the corners(0, 0) and(L,L), the expansion to lowest order gives

P = (1 + ε)P (24)
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Figure 3. Density plot for the stationary probability distribution of equation (17). The system is
an infinite potential well (L = 100,ε = 0.8) and transitions rate are reported in figure 2. Darker
regions correspond to higher values of probability.

whilst at the other two corners

P = (1− ε)P . (25)

For ε = 0 the equations are satisfied for allP , whereas forε > 0 these conditions imply that,
at the corners,P → 0 in the continuum limit. In this limit, however, one is interested in the
probability densityp = P/a2, wherea is the lattice spacing. From numerical simulations
of increasing system sizes we find that, asa → 0, p(0, L) = p(L, 0) → 0 whereas
p(0, 0) = p(L,L)→∞. This behaviour shows that, in the continuum limit, the limitε → 0
might be singular and suggests that any systematic attempt to perturb about the stationary
solution for the system with uncorrelated noises is likely to fail.

We turn now to a different class of problems, namely, diffusion in disordered systems.
There is considerable current interest in the transport properties of particles in random
environments [17]. One usually considers a single Brownian particle governed by equation (1)
in whichV (x) is a quenched random potential. The dynamics can be defined on a lattice, and
the hopping rates between neighbouring sites are chosen to be of the form

Wi→j ∼ exp(−β(Vj − Vi)) (26)

whereVi is the potential on sitei andβ is an inverse-temperature parameter. Two simple
choices can be made for the quenched potentialVi . If the potential is assumed to be bounded
on long-length scales, i.e.Vi = ηi whereηi is uncorrelated white noise, the late-time dynamics
is diffusive with a typical displacementx ∼ t1/2. However, if the potential is itself a random
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Figure 4. Probability distributionP(d) in the case of infinite potential well (L = 100). The curves
correspond toε = 0.3, 0.5, 0.7, 0.9 with the larger values ofε having greater weight at the origin.

walk,Vi = Vi−1 + ηi , then the particle’s dynamics is extremely slow, withx ∼ log2(t) in the
long-time limit [14]. This is because, in the case of a rough potential, the effective potential
barriers grow on increasing length scales.

Here we are interested in the dynamics of two Brownian particles, moving in a disordered
environment, and subjected to correlated noises. In particular, we will restrict our study
to the case of completely correlated noise,ε = 1, which corresponds to the two particles
experiencing the same noise source. In the absence of any potential the two particles would
never meet because their relative separation will remain a constant, whereas in the confining
potentials discussed above, this limit results in complete aggregation. Will similar behaviour
be present for motion in a random potential, even if it remains smooth on long-length scales?

In order to address this issue we will consider the following question: given that if the two
particles meet they will remain together forever, what is the distribution of meeting times for
two particles subject to the same noise and in the same random environment? First passage
problems of this type have been studied in the context of persistence phenomena [15] and
aggregation in driven granular gases [16]. From knowledge of the asymptotic behaviour
of the meeting time distribution, one can infer the probability of meeting in the long-time
limit. In figure 5 we show the meeting time distributions for two particles moving in a rough
potential, with both uncorrelated and correlated noise. The noise correlation is introduced
into the simulations by using the same random number for each particle, in conjunction with
the spatially dependent transition rate, equation (26). The random numbers used to define the
potential,ηi , were drawn from a Gaussian distribution with unit variance and we tookβ = 1.
The initial particle separation, combined with the transition rate, merely sets the timescale for
the first encounter and does not change the asymptotic scaling behaviour. In the long-time limit
the two distributions appear to be the same, decaying as 1/(t ln4 t), in agreement with recent
analytical calculations [17]. Thus, even with correlated noises the two particles will meet and
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Figure 5. Meeting time distributions in logarithmic timeT = ln t for two particles in a rough
potential, with correlated (�) and uncorrelated (◦) noise. The initial separation between particles
is ten lattice spacings.

then remain together. The equivalence of the two distributions ast → ∞ also suggests that
the noise correlation is irrelevant in the long-time limit. This may be due to the existence of
growing potential barriers on long-length scales which dominate the late-time dynamics.

In figure 6 we show the meeting time distribution for two particles moving in a smooth
random potential. In both cases, with uncorrelated or completely correlated noises (ε = 1), we
find that the distribution decays asymptotically as 1/t3/2. Note that this is the same behaviour
as that of the single-particle first-return distribution for Brownian motion, which has the same
asymptotic form as the meeting time distribution of two independent random walkers. In
addition, we observe that the two curves are related by a simple rescaling of time. One can thus
interpret the effect of the noise correlation as a rescaling of the effective diffusion coefficient
for the two-particle motion. Consequently, even in the presence of a smooth, non-confining
potential, the two particles will coalesce and remain together ever after.

Finally, we consider the motion of two particles whose noise correlator depends on the
relative distance so that, in (8),ε = ε(x1 − x2). We require thatε(0) = 1 (perfectly
correlated noise) andε(∞) = 0 (completely uncorrelated noise), which is appropriate, for
instance, in the case of two particles immersed in a fluid. The first condition implies that,
once the particles are at the same point at the same time, they will remain together so that
P(x1, x2) ∼ δ(x1−x2)e−V (x1)/D is a possible solution for the stationary probability distribution.
However, it is nota priori obvious that the two particles will always be able to meet under
generic conditions. In order to elucidate this point we consider two particles in a harmonic
external potential. In the variabled = x1− x2 the equation of motion is

ḋ = −kd +
√
D̃(d)ξ(t) (27)

whereD̃(d) = 2D(1− ε(d)) and〈ξ(t)ξ(t ′)〉 = 2δ(t − t ′). The corresponding Fokker–Planck



Langevin equations coupled through correlated noises 5259

Figure 6. Meeting-time distributions in logarithmic timeT = ln t for two particles in a smooth
potential, with correlated (�) and uncorrelated (◦) noise. The starting particle separation is 10.
The continuous line shows the correlated-noise data shifted by1T = 1.65, which corresponds to
a simple rescaling oft .

equation, in the Ito convention [18,19], is

∂P (d, t)

∂t
= ∂

∂d

[
kdP (d, t) +

∂(D̃(d)P (d, t))

∂d

]
(28)

and the stationary probability distribution can be formally written as

Pst(d) ∝ 1

D̃(d)
e−k

∫ d
d0

y

D̃(y)
dy
. (29)

Without loss of generality we can takẽD(d) ∼ dα for smalld, whereα is a suitable parameter.
It is clear that the distribution (29) is an acceptable solution only forα < 1. In the limit
α → 1, the distribution (29) tends toPst(d) ∼ δ(d), which is also the solution forα > 1 (in
fact the distribution (29) withα > 1 is not normalizable). Intuitively, this different behaviour
as a function ofα can be understood by means of the following heuristic argument. Ifα > 1,
ε′(0) = 0 so that, ford sufficiently small, the noises on the two particles are ‘almost’ perfectly
correlated and the external potential makes them coalesce. On the other hand, ifα < 1
ε′(0) = −∞, so that even for smalld the noises are sufficiently uncorrelated to keep them
apart.

In summary, we have discussed the evolution of two particles driven by correlated noise
sources, in the presence of different types of external potentials. We find that, in the presence of
a confining potential, particles tend to aggregate as the correlation in the noises is increased and
the trajectories converge in the case of identical noises. This effect arises from the combined
action of the correlated noises and the confining external potential, as clearly emerges in the
example of the infinite potential well. We have limited ourselves to a one-dimensional motion
as we do not expect the dimensionality of the space to be relevant in this case. We observe that,
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if noises are perfectly correlated, particles coalesce even in the presence of a non-confining
disordered potential. In this case, however, the one-dimensional character of the model might
be important, as particles moving in a three-dimensional environment are expected, with a
finite probability, not to meet. Our investigation extends in many respects previous studies,
both in the choice of the correlation in the noises and in the form of the external potential.
One obvious generalization of our findings is to the case ofN particles where correlated noise
induces a macroscopic aggregation. This property can be useful in studying phase transitions
from a dynamical point of view [20].
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